Vanishing of Avramov obstructions for products of sequentially transverse ideals
نویسندگان
چکیده
Two ideals I and J are called transverse if ∩ = . We show that the obstructions defined by Avramov for products of (sequentially) in regular local rings always 0. In particular, we compute an explicit free resolution Koszul homology all such ideals. Moreover, construct trivial Massey operation on associated complex hence (by Golod's construction) a minimal residue field over quotient product conclude with questions about existence associative multiplicative structures
منابع مشابه
Sequentially Cohen-macaulay Edge Ideals
Let G be a simple undirected graph on n vertices, and let I(G) ⊆ R = k[x1, . . . , xn] denote its associated edge ideal. We show that all chordal graphs G are sequentially Cohen-Macaulay; our proof depends upon showing that the Alexander dual of I(G) is componentwise linear. Our result complements Faridi’s theorem that the facet ideal of a simplicial tree is sequentially Cohen-Macaulay and impl...
متن کاملBinomial vanishing ideals
In this note we characterize, in algebraic and geometric terms, when a graded vanishing ideal is generated by binomials over any field K. 2010 MSC: 13F20, 13C05, 14H45
متن کاملVanishing ideals over rational parameterizations
Let R = K[y] = K[y1, . . . , yn] be a polynomial ring over an arbitrary field K and let F be a finite set {f1/g1, . . . , fs/gs} of rational functions in K(y), the quotient field of R, where fi (resp. gi) is in R (resp. R \ {0}) for all i. As usual we denote the affine and projective spaces over the field K by As and Ps−1, respectively. Points of the projective space Ps−1 are denoted by [α], wh...
متن کاملstudy of cohesive devices in the textbook of english for the students of apsychology by rastegarpour
this study investigates the cohesive devices used in the textbook of english for the students of psychology. the research questions and hypotheses in the present study are based on what frequency and distribution of grammatical and lexical cohesive devices are. then, to answer the questions all grammatical and lexical cohesive devices in reading comprehension passages from 6 units of 21units th...
Vanishing Ideals of Lattice Diagram Determinants
A lattice diagram is a finite set L = {(p1, q1), . . . , (pn, qn)} of lattice cells in the positive quadrant. The corresponding lattice diagram determinant is ∆L(Xn;Yn) = det ‖ x pj i y qj i ‖. The space ML is the space spanned by all partial derivatives of ∆L(Xn;Yn). We denote by M 0 L the Y -free component of ML. For μ a partition of n + 1, we denote by μ/ij the diagram obtained by removing t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Pure and Applied Algebra
سال: 2022
ISSN: ['1873-1376', '0022-4049']
DOI: https://doi.org/10.1016/j.jpaa.2022.107111